Electrical Abstract- NBC- (Part-2)


Luminous Efficacy, Lumen Maintenance and Color Rendition (Table-8) NBC

Light Source  Wattage Efficacy (lm/W ) Average Life Maintenance Color Rendition
Incandescent lamps  15 to 200  12 to 20  500 to 1000  Fair to good  Very good
Tungsten halogen     300 to 1500  20 to 27  200 to 2000  Good to very good  Very good
Standard fluorescent lamps       20 to 80 55 to 65 5000 Fair to good  Good
Compact fluorescent lamps (CFL)       5 to 40  60 to 70 7500 Good Good to very good
Slim line fluorescent      18 to 58 57 to 67 5000  Fair to good Good
High pressure mercury vapor lamps      60 to 1000  50 to 65 5000  Very low to fair  Federate
Blended – light lamps    160 to 250  20 to 30 5000 Low to fair  Federate
High pressure sodium vapor lamps  50 to 1000  90 to 125  10000 to 15000  Fair to good  Low to good
Metal halide lamps       35 to 2000  80 to 95 4000 to 10000 Very low  Very good
Low pressure sodium       10 to 180 100 to 200 10000 to 20000 Good to very good  Poor
LED  0.5 to 2.0  60 to 100  10000 Very good  Good for white LED


Approximate Cable Current Capacity

Cable Size Current Capacity MCB Size
1.5 Sq.mm 7.5 To 16 A 8A
2.5 Sq.mm 16 To 22 A 15A
4 Sq.mm 22 To 30 A 20A
6 Sq.mm 39 To 39 A 30A
10 Sq.mm 39 To 54A 40A
16 Sq.mm 54 To 72A 60A
25 Sq.mm 72 To 93A 80A
50 Sq.mm 117 To 147A 125A
70 Sq.mm 147 To 180A 150A
95 Sq.mm 180 To 216A 200A
120 Sq.mm 216 To 250A 225A
150 Sq.mm 250 To 287A 275A
185 Sq.mm 287 To 334A 300A
240 Sq.mm 334 To 400A 350A


Requirements  for  Physical  Protection  of Underground Cables  (As per NBC)

Protective  Element Specifications
Bricks  (a) 100 mm minimum  width 
(b) 25 mm thick 
(c) sand cushioning 100  mm  and  sand  cover 100 mm 
Concrete slabs At least 50 mm thick
Plastic  slabs (polymeric cover  strips) Fiber  reinforced plastic depending on properties  and has to be matched with the protective cushioning and cover
PVC  conduit  or  PVC  pipe  or stoneware  pipe or Hume pipe The  pipe  diameter should  be  such  so  that the  cable  is  able  to easily slip down the pipe
Galvanized pipe  The  pipe  diameter should  be  such  so  that the  cable  is  able  to easily slip down the pipe
The Trench : The trench shall be back filled to cover the cable initially by 200 mm of sand fill; and then a plastic marker strip  hall be put over the full length of cable in the trench.
The Marker Signs: The marker signs shall be provided where any cable enters or leaves a building. This will identify that there is a cable located underground near the building.
 The trench shall then be completely filled. If the cables rise above ground to enter a building or other structure, a mechanical protection such as a GI pipe or PVC pipe for the cable from the trench depth to a height of 2.0 m above ground shall be provided.



Capacity  kVA Area m2 Clear Height below the Soffit of the Beam m
25 56 3.6
48 56 3.6
100 65 3.6
150 72 3.6
248 100 4.2
350 100 4.2
480 100 4.2
600 110 4.6
800 120 4.6
1010 120 6.5
1250 120 6.5
1600 150 6.5
2000 150 6.5


Low Voltage Cabling for Building (As per NBC)

Low Voltage Cable Cables/wires, such as fiber optic cable, co-axial cable, etc. These shall be laid at least at a distance of 300 mm from any power wire or cable. The distance may be reduced only by using completely closed earthed metal trucking with metal separations for various kind of cable. Special care shall be taken to ensure that the conduit runs and wiring are laid properly for low voltage signal to flow through it.
The power cable and the signal or data cable may run together under floor and near the equipment. However, separation may be required from the insulation aspect, if the signal cable is running close to an un-insulated conductor carrying power at high voltage. All types of signal cables are required to have insulation level for withstanding 2 kV impulse voltages even if they are meant for service at low voltage.
Conduit Color Scheme Power conduit=Black
Security conduit=Blue
Fire alarm conduit=Red
Low voltage conduit=Brown
UPS conduit Green


Sub Station Guideline (As per NBC)

Substation Location Location of substation in the basement should be avoided, as far as possible.
If there is only one basement in a building, the substation/switch room shall not be provided in the basement and the floor level of the substation shall not be lowest point of the basement.
Substation shall not be located immediately above or below plumbing water tanks or sewage treatment plant (STP) water tanks at the same location
Substation Door/Shutter All door openings from substation, electrical rooms, etc, should open outwards
Vertical shutters (like rolling shutters) may also be acceptable provided they are combined with a single leaf door opening outwards for exit in case of emergency
For large substation room/electrical  room  having  multiple equipment,  two  or more  doors  shall  be provided which shall be remotely located from each other
No services or ventilation shafts shall open into substation or switch room unless specific to substation or switch room
Transformer Location In case of HV panel and transformers located at different floors or at a distance more than 20 m, HV isolator shall be  provided  at transformer end
In case transformer and main MV/LV panel room are located at different floors or are at a distance more than 20 m, MV/LV isolator shall be provided at  transformer  end
In  case  of  two  transformers  (dry  type  or transformers with oil quantity less than 2 000 liter)  located  next  to  each  other without intermittent wall, the distance between the two shall  be minimum  1 500 mm  for  11  kV, minimum 2 000 mm for 22 kV and minimum 2 500 mm for 33 kV. Beyond 33 kV, two transformers shall be separated by baffle wall of 4 h fire rating.
If dry type transformer is used, it may be located adjacent to medium voltage switch gear in the form of unit type substation. In such a case, no separate room or fire barrier for the transformer is required either between transformers or between transformer and the switch gear, thereby decreasing the room space requirement; however, minimum distances as specified.
Oil Filled Equipment (Transformer / C.B) Substations with oil-filled equipment/apparatus transformers and high voltage panels shall be either located in open or in a utility building
They shall not be located in any floor other than the ground floor or the first basement of a utility building  not be located below first basement slab of utility building.
They shall have direct access from outside the building for operation and maintenance of the equipment.
It shall be separated from the adjoining buildings including the main building by at least 6 m clear distance to allow passage of fire tender between the substation/utility building and adjoining building/main building.
Substation equipment having more than 2 000 liter of oil whether located indoors in the utility building or outdoors shall have  baffle walls  of  4  h  fire  rating between apparatus.
Provision of  suitable oil soak-pit, and where use of more than 9 000 liter of oil in any one oil tank, receptacle or chamber is involved, provision shall be made for the draining away or removal of any oil which may leak or escape from the tank, receptacle or chamber containing the same
Power Supply Voltage supply  is  at  240  V  single  phase  up  to  5  kVA, 415/240 V 3-phase from 5 kVA to 100 kVA, 11 kV (or 22 kV) for loads up to 5 MVA and 33 kV or 66 kV for consumers of connected load or contract demand more than 5 MVA.
In case of connected load of 100 kVA and above, the relative advantage of high voltage three-phase supply should be considered.
In case of single point high voltage metering, energy meters shall  be  installed  in  building  premise,such a place which is readily accessible to the owner/operator of the building and the Authority. The supplier or owner of the installation shall provide at the point of commencement of supply a suitable isolating device fixed in a conspicuous position at not more than 1.7 m above the ground so as to completely isolate the supply to the building in case of emergency
Trench Drain In case of cable trench in substation/HV switch room/MV switch room, the same shall be adequately drained to ensure no water is stagnated at any time with live cables.
Fence for Substation Enclose any part of the substation which is open to the air, with a fence (earthed efficiently at both ends) or wall not less than 1800 mm (preferably not less than 2400 mm) in height
HV Distribution in Building The power supply HV cables voltage shall not be more than 12 kV and a separate dedicated and  fire  compartmented  shaft  should  be provided for carrying such high voltage cables to upper floors in a building. These shall not be mixed with any other shaft and suitable fire detection and suppression measures shall be provided throughout the length of the cable on each floor.
Switch Room / MV switch room Switch room / MV switch room shall be arrived at considering 1200 mm clearance requirement from top of the equipment to the below of the soffit of the beam .In case cable entry/exit is from above the  equipment  (transformer,  HV switchgear, MV  switchgear),  height  of substation room/HV switch room/MV switch room shall also take into account requirement of space for turning radius of cable above the equipment height.

Area for Transformer Room: (As per NBC-2005):

Transformer Size Min. Transformer Room Area (M2) Min. Total Sub Station Area( Incoming HV,LV Panel, T.C Roof) (M2) Min. Space Width (Meter)




























































  •  The Capacitor Bank should be automatic Switched type for Sub Station of 5MVA and Higher.
  • Transformer up to 25KVA can be mounted direct on Pole.
  • Transformer from 25KVA to 250KVA can be mounted either on “H” Frame of Plinth.
  • Transformer above 250KVA can be mounted Plinth only.
  • Transformer above 100MVA shall be protected by Drop out Fuse or Circuit Breaker.


About Jignesh.Parmar (B.E,Mtech,MIE,FIE,CEng)
Jignesh Parmar has completed M.Tech (Power System Control), B.E(Electrical). He is member of Institution of Engineers (MIE) and CEng,India. Membership No:M-1473586.He has more than 16 years experience in Transmission -Distribution-Electrical Energy theft detection-Electrical Maintenance-Electrical Projects (Planning-Designing-Technical Review-coordination -Execution). He is Presently associate with one of the leading business group as a Deputy Manager at Ahmedabad,India. He has published numbers of Technical Articles in “Electrical Mirror”, “Electrical India”, “Lighting India”,”Smart Energy”, “Industrial Electrix”(Australian Power Publications) Magazines. He is Freelancer Programmer of Advance Excel and design useful Excel base Electrical Programs as per IS, NEC, IEC,IEEE codes. He is Technical Blogger and Familiar with English, Hindi, Gujarati, French languages. He wants to Share his experience & Knowledge and help technical enthusiasts to find suitable solutions and updating themselves on various Engineering Topics.

12 Responses to Electrical Abstract- NBC- (Part-2)

  1. Sir,Thank’s for your’s valuable thump rules sent to us. always we need to your great advise and supports.

  2. Muhammad Mohsin Ansari says:

    Thank you so much it’s awesome knowledge

  3. abebe says:

    thank you so much

  4. SALVE SANJEEV says:

    Thanks for sharing very useful information to me.
    Now I am in charge ELECTRICAL of MVML CHKAN PLANT PUNE .

  5. Isaac Ceasar says:

    Sir,thanks for sparing time to give us more knowledge on electricity.

  6. pang says:

    Dear, simply excellent. Your input is invaluable.
    If allowed, a comment.
    Some information upon your knowledge on Batteries, and charge managment / know how.
    From devices to storage. What is true what is false.

  7. Sumesh says:

    As per NBC DG set is not permitted in floors above ground. Is it applicable to service or utility building.

  8. Ms. Su Mon Myint says:

    Thanks you for the above article.
    This is very useful for load estimation and cable sizing.
    I want to know the cooling system of a distribution transformer.

  9. soosaimichel says:

    Your updating very useful,,
    Thank you

  10. nishad1982 says:

    There is a hospital with total of 1400 KW load. What size of transformer required here? Where will we install the Energy Meter (KWH meter)?

  11. Prodipta Majumder says:

    Sir, I am an electrical engineer, working in a private electrical base company Bangladesh. This article helps me a lot. Thanks.

  12. Sanjay keshari says:

    Tarsformer pm and cm
    Moter pm and cm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: